Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N Mazoir,^a M. Giorgi^b* and A. Benharref^a

^aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco, and ^bLaboratoire de Cristallochimie, Université Paul Cézanne Aix-Marseille III, Faculté des Sciences de St. Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France

Correspondence e-mail: michel.giorgi@univ.u-3mrs.fr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.071 wR factor = 0.172 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(4*S*,5*S*,10*S*,13*R*,14*R*,17*R*)-8*a*,9*a*-Epoxy-4*a*,14*a*-dimethyl-5*a*-cholestan-3-one

The stereochemistry of the oxirane bridge of the title compound, $C_{29}H_{48}O_2$, has been confirmed by single-crystal X-ray diffraction.

Received 20 September 2005 Accepted 11 October 2005 Online 15 October 2005

Comment

In our efforts to prepare compounds with potential pharmacological activities (Auhmani *et al.*, 2005; Mazoir, Liazid *et al.*, 2005), we undertook the synthesis of triterpenes functionalized with an oxirane bridge. It is well known that epoxidation of olefins affords a straightforward way to achieve such goals (Sharpless, 2002). Thus, the oxidation of 4α , 14α -dimethyl- 5α cholest-8-en- 3β -ol, (1), a major triterpene isolated from *Euphorbia officinarum* latex (Benharref & Lavergne, 1985; Mazoir, Giorgi & Auhman, 2005), with chromic anhydride (Auhmani *et al.*, 2005), followed by epoxidation using a stoichiometric quantity of *meta*-chloroperbenzoic acid (*m*-CPBA), gives the title compound, (I), as the only product. The structure of (I) was established by ¹H and ¹³C NMR and confirmed by single-crystal X-ray diffraction.

The core of the molecule of (I) consists of one fivemembered and three six-membered fused rings, with the oxirane bridge linking the two C atoms, C8 and C9, and *cis* to the methyl groups attached to atoms C4 and C14 (Fig. 1).

(II)

The crystal packing shows that molecules of (I) form extended sheets parallel to the *ac* plane (Fig. 2). The

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

comparison of the molecular structure of (I) with that of a related triterpene bearing a double bond at C8=C9, (II) (Auhmani *et al.*, 2005), an analogue of the synthetic precursor of (I), reveals that the epoxidation of the olefin does not change the conformations of the rings within the molecule during the oxidation process: the r.m.s. deviation between (I) and (II), calculated with the 17 C atoms constituting the core of each molecule, is 0.2 Å. In conclusion, the stereochemistry of the four rings is conserved during the conversion of the olefin to the epoxide.

Experimental

The oxidation of 4α , 14α -dimethyl- 5α -cholest-8-en- 3β -ol, (1), isolated from the latex of *Euphorbia officinarum*, was carried out using chromic anhydride in acetone at 273 K for 35 min. The product resulting from oxidation was dissolved in chloroform (50 ml), and 2 equivalents of *meta*-chloroperbenzoic acid (*m*-CPBA) were added. The mixture was stirred at room temperature for 3 h and yielded compound (I) in 85% yield. Suitable crystals were obtained by evaporation of a hexane solution at 277 K. Spectroscopic analysis: ¹H NMR (CDCl₃, δ , p.p.m.): 0.73 (H18, *s*), 0.77 (H26, *d*, *J* = 2 Hz), 0.80 (H27, *J* = 2 Hz), 0.82 (H21, *d*, *J* = 6 Hz), 0.83 (H19, *s*), 0.87 (H29, *d*, *J* = 6.2 Hz); ¹³C NMR (75 MHz, CDCl3, δ , p.p.m.): 36.3 (C1), 36.42 (C2), 212.40 (C3), 44.5 (C4), 49.2 (C5), 22.7 (C6), 22.00 (C7), 69.59 (C8), 68.26 (C9), 36.40 (C10), 19.40 (C11), 26.50 (C12), 36.32 (C20), 19.60 (C21), 36.20 (C22), 24.10 (C23), 39.50 (C24), 28.10 (C25), 21.50 (C26), 21.80 (C27), 16.50 (C28), 24.50 (C29).

 $D_x = 1.070 \text{ Mg m}^{-3}$

Cell parameters from 11835

2892 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 1.8-28.4^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\text{int}} = 0.07$ $\theta_{\text{max}} = 28.4^{\circ}$

 $h = -18 \rightarrow 18$

 $k=-8\rightarrow 8$

 $l = -20 \rightarrow 20$

Prism, colourless

 $0.5 \times 0.2 \times 0.2$ mm

Crystal data

 $\begin{array}{l} C_{29}H_{48}O_2 \\ M_r = 428.67 \\ \text{Monoclinic, } P2_1 \\ a = 13.7023 \ (4) \ \text{\AA} \\ b = 6.3493 \ (2) \ \text{\AA} \\ c = 15.6206 \ (5) \ \text{\AA} \\ \beta = 101.721 \ (1)^\circ \\ V = 1330.60 \ (7) \ \text{\AA}^3 \\ Z = 2 \end{array}$

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: none 11835 measured reflections 3532 independent reflections

Refinement

 $\begin{array}{ll} \text{Refinement on } F^2 & w = 1/[\sigma^2(F_{\text{o}}^2) + (0.0662P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.071 & w \text{here } P = (F_{\text{o}}^2 + 2F_{\text{c}}^2)/3 \\ S = 1.10 & (\Delta/\sigma)_{\text{max}} < 0.001 \\ 3532 \text{ reflections} & \Delta\rho_{\text{max}} = 0.31 \text{ e } \text{ Å}^{-3} \\ 280 \text{ parameters} & \Delta\rho_{\text{min}} = -0.20 \text{ e } \text{ Å}^{-3} \end{array}$

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, except for the methyl groups, which were allowed to rotate freely about their C–C bond, with C–H distances constrained to 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. The absolute configuration was assigned on the basis of the known configuration of the starting material.

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size.

A view of the crystal packing of (I). H atoms have been omitted for clarity.

Data collection: *KappaCCD Server Software* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

This work was partially supported by the collaborative project CSIC–Laboratory of Natural Substances, University Cadi Ayyad, Marrakech, Morocco.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Auhmani, A., Giorgi, M. & Mazoir, N. (2005). Acta Cryst. E61, o1190-o1192.

- Benharref, A. & Lavergne, J.-P. (1985). Bull. Soc. Chim. Fr. pp. 965-972.
- Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Mazoir, N., Giorgi, M. & Auhmani, A. (2005). Acta Cryst. E61, 02382-02383.
- Mazoir, N., Liazid, A., Auhmani, A., Daoubi, M., Dakir, M., Benharref, A., Kenz, A. & Pierrot, M. (2005). *Phys. Chem. News*, **21**, 124–125.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2024–2032.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.